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Motivation and Background

Improving on existing methods

• Stochastic sampling methods for random PDEs are computationally
expensive: each sample point corresponds to a PDE solve.

• Traditionally, we try to improve single level methods by reducing the number
of samples/solves: Quasi Monte Carlo and importance sampling,
(anisotropic) sparse grids, adaptive grids.

• Exploit the deterministic hierarchy: For a given accuracy, multilevel methods
seek to reduce the complexity by spreading computational cost evenly across
several resolutions of the spatial discretization (MLSC - Max Gunzburger’s
talk)

• Exploit the stochastic hierarchy: Sparse grids with nested grid points provide
a natural multilevel hierarchy which we can use to accelerate each PDE solve
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Motivation and Background

Uncertainty Quantification

parameters:
y(ω), ω ∈ ΩP −→

SPDE model:
L(u, y) = f

for a.e. x ∈ D ⊂ Rd
−→

quantity of
interest
Q[u(·, y)]

• The parameters y(ω) may be affected by uncertainty (experimental data,
incomplete description of parameters, unresolved scales, etc.)

• y : Ω→ Γ ⊂ RN can be assumed to be a random vector with N components, i.e.,
y = (y1, . . . , yN), with joint probability density function ρ(y)

The solution u is a stochastic function, u(·, y)

Goals of forward UQ: Approximate u or some statistical QoI depending on u, i.e.

E[u], Var[u], P[u > u0] = E[1{u>u0}]

with the minimal computational cost possible.
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Motivation and Background : Model Problem

Model Problem - Linear Elliptic SPDE

Let (Ω,F ,P) be a complete probability space. Find u such that almost surely, i.e.
for P-almost every ω ∈ Ω{

−∇ · (a(x , ω) · ∇u(x , ω)) = f (x , ω) x ∈ D,
u(x , ω) = 0 x ∈ ∂D.

(1)

We’ll assume that a, f are such that this problem has a unique solution represented
in terms of y ∈ Γ ⊂ RN , a finite dimensional random vector.

• Such a PDE might be used to model ground water flow or current through a
random material.

• The methods we’ll talk about are not specific to this simple class of
problems, but our methods extend, e.g., to non-linear PDEs, and more
generally to random PDEs where the solution map y 7→ u(·, y) has some
analytic regularity.
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Motivation and Background : Single Level Methods

Monte Carlo Method

Pure random sampling to approximate statistics of the solution:

E(u) =

∫
Γ

u(x , y)ρ(y) dy ≈ 1

M

M∑
j=1

u(x , yj)

• Most widely used in applications and high (∼ 100) dimensional problems

• Pro: Simple to implement, easily parallelizable, convergence rate O(M−1/2)
is dimension independent, but...

• Con: Relatively slow if the solution has some smoothness wrt random
parameters
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Motivation and Background : Single Level Methods

Analytic Regularity

Theorem: [Babuska et al ’07,’10, Webster ’07]

• Let Γ∗n =
∏N

j=1

j 6=n
Γj , and let y∗n denote an arbitrary element of Γ∗n

∃ constants λ (independent of n), γn ≥ 0 and regions Σn ≡ {z ∈ C, dist(z , Γn) ≤ γn} in
the complex plane for which

max
y∗n∈Γ∗n

max
z∈Σn

‖∇u(·, y∗n , z)‖L2(D) ≤ λ.

That is, the solution u(x , y∗n , yn) admits an analytic extension u(x , y∗n , z), z ∈ Σn ⊂ C.

• The analyticity of the solution u(x , y) w.r.t. each random direction yn
suggests the use of multivariate global polynomial approximation. In cases
with less regularity we might turn to the use of local basis functions.

Analytic polydisc regularity: [Cohen-DeVore-Schwab 2010, Chkifa-Cohen-DeVore-Schwab

2013, Tran-Trenchea-Webster 2013, Tran-Webster-Zhang 2014]
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Motivation and Background : Single Level Methods

Spectral Polynomial Methods

• Stochastic Galerkin: projection technique, intrusive approach

• Stochastic collocation: interpolation technique, non-intrusive approach

uSL
h,M(x , y) =

M∑
j=1

cj(x)ψj(y) pro: convergence can be faster than MC

con: curse of dimensionality

• ψj is a linear combination of tensorized 1D global Lagrange nodal basis
functions and cj are determined through uh(x , yj)

• Collocation usually beats Galerkin from a point of view of complexity.
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Global Sparse Grid Interpolation

Generalized Sparse Grid Interpolation

• Define {y (l)
n,j}

p(l)
j=1 ⊂ Γn to be a set of p(l) points in Γn.

• {Up(l)
n }l∈N : C 0(Γn)→ Pp(l)−1(Γn) is the standard one-dimensional Lagrange

interpolation operator for {y (l)
n,j}

p(l)
j=1 ⊂ Γn.

• ∆
p(l)
n := Up(l)

n − Up(l−1)
n .

• g : NN
+ → N is strictly increasing and defines the mapping between the

multi-index l and the level L used to construct the sparse grid.

The L-th level generalized sparse-grid approximation of v ∈ C 0(Γ) is given by

Ap,g
L [v ] =

∑
g(l)≤L

N⊗
n=1

∆p(ln)
n [v ]

= Ap,g
L−1[v ] +

∑
g(l)=L

N⊗
n=1

∆p(ln)
n [v ]
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Global Sparse Grid Interpolation

Polynomial Spaces

Choose g and p to construct the SG approximation in a given polynomial space:

Ap,g
L [v ] =

∑
g(l)≤L

N⊗
n=1

∆p(ln)
n [v ]

Polynomial Space p(ln) g(l)

Tensor product p(ln) = ln max
1≤n≤N

(ln − 1)

Total degree p(ln) = ln
∑N

n=1(ln − 1)

Hyperbolic cross p(ln) = ln
∏N

n=1(ln − 1)

Sparse Smolyak p(ln) = 2ln−1 + 1, l > 1
∑N

n=1(ln − 1)

Anisotropic Smolyak p(ln) = 2ln−1 + 1, l > 1
∑N

n=1
αn

αmin
(ln − 1), α ∈ RN

+
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Global Sparse Grid Interpolation

Convergence of Sparse Grid Interpolants

We will use the sparse Smolyak construction, with Clenshaw-Curtis abscissas for
Γn = [−1, 1] and p(ln) > 1:

y
(ln)
n,j = − cos

(
π(j − 1)

p(ln)− 1

)
for j = 1, . . . , p(ln).

These choices result in a nested set of multidimensional collocation points.

Let HL—a set of size #(HL) = ML, to be the set of multiD interpolation points

• Tensor product: O(M
−r/N
L )

• Isotropic sparse grids: O(M
−r/ log(N)
L )

[Smolyak 1963; Nobile-Tempone-Webster 2008]

• Anisotropic sparse grids: O(M
−r/G(α,N)
L )

[Nobile-Tempone-Webster 2008]
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Hierarchical Acceleration

Main idea: exploit the stochastic hierarchy

When nested sparse grids are used to construct a global Lagrange interpolant, we
can solve the PDE at samples points in a hierarchical order (i.e., proceed level by
level), and construct coarse grid solutions at intermediate steps in the
construction of the full interpolant.
Since we have to solve a linear system at each collocation sample point, we can
use these intermediate solutions to provide strong preconditioners and good initial
guesses for the iterative solver.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Solve Ajcj = f j
at all blue points

−→
Interpolate to

accelerate
solution

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
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Hierarchical Acceleration

Some Previous Work

Gordon, Powell. Solving Stochastic Collocation with Algebraic Multigrid

• Compare mean-based, full multigrid, and multigrid + recycled setup for
preconditioning SC systems

• They also implement a “nearest neighbor” strategy for initial vectors

Gunzburger, Webster, Zhang. Stochastic finite element methods for PDEs with
random input data

• Implement acceleration using local basis functions

• No significant additional cost for interpolation

Relationship to multilevel: Multilevel methods reduce the complexity of
stochastic sampling methods by balancing errors across a sequence of stochastic
and spatial approximations.

u
(ML)
K =

K∑
k=0

ILK−k
[uhk − uhk−1

]
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Hierarchical Acceleration : Method

Construction of fully discrete solution

For a prescribed accuracy τ > 0, the semi-discrete solution uh(x , yj) is
approximated by

uh(x , yj) =

Nh∑
i=1

cj,iϕi (x) ≈ ũh(x , yj) =

Nh∑
i=1

c̃j,iϕi (x),

where
c̃j = (c̃j,1, . . . , c̃j,Nh

)T

is the output of the solver satisfying ‖cj − c̃j‖Aj < τ .

Our final approximation is
given by :

ũh,L(x , y) :=

ML∑
j=1

(
Nh∑
i=1

c̃j,iϕi (x)

)
ψL,j(y).
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Hierarchical Acceleration : Method

Interpolated initial vectors

Convergence of CG for Ajcj = f j :

‖cj − c(k)
j ‖Aj ≤ 2

(√
κj − 1
√
κj + 1

)k

‖cj − c(0)
j ‖Aj

Improving the performance of the CG solver is a matter of either improving the condition
number κj , or improving the initial guess c(0)

j .
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Specifically, assume we have solved for each the vectors c̃m,m = 1, . . . ,ML−1. Then for
any new point yj ∈ ∆HL, a good approximation to cj is given by

c(0)
j =

ML−1∑
m=1

c̃mψL−1,m(yj).
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Alternatively, suppose we have constructed strong preconditioners Pm,m = 1, . . . ,ML−1.
Then for any new point yj ∈ ∆HL,

Pj =

ML−1∑
m=1

PmψL−1,m(yj).
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Hierarchical Acceleration : Analysis

The total error e = u(x , y)− ũh,ML
(x , y) can be split into

‖e‖ ≤ ‖u − uh‖︸ ︷︷ ︸
e1

+ ‖uh − uh,ML
‖︸ ︷︷ ︸

e2

+ ‖uh,ML
− ũh,ML

‖︸ ︷︷ ︸
e3(solver error)

Sufficient conditions to achieve overall error ≤ ε:

‖e1‖ ≤C1 hs ≤ ε

3

‖e2‖ ≤C2(N) e−σ(N)L ≤ ε

3

‖e3‖ ≤C3 ΛL ecg ≤
ε

3

Here s, σ(N) are the convergence rates of the FEM and interpolation methods,
ΛL is the Lebesgue constant, and

eCG = max
yj∈HL

‖cj − c̃j‖Aj
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Hierarchical Acceleration : Analysis

Iteration Estimate: Zero Vectors

Theorem: [Galindo, J, Webster, Zhang]

Given ε > 0, the total number of CG iterations needed to achieve an error
‖u − ũh,ML

‖ < ε using zero initial vectors is bounded by:

Kzero ≤α1(N) ε
− ln 2

σ

{
α2(N) + α3 ln ε−1

}N−1

×
√
κ̄
{

ln ε−1 + ln ΛL + α4(N)
}

where κ̄ = maxy∈HL
κ̄(y).

The first line (in blue) comes from the number of collocation nodes, which we
can’t affect by our algorithm. The second part comes from the convergence of the
CG algorithm, which for fine grid points we can reduce by a log factor (in red).
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Hierarchical Acceleration : Analysis

Iteration Estimate: Accelerated Case

Theorem: [Galindo, J, Webster, Zhang]

Given ε > 0, the total number of CG iterations needed to achieve an error
‖u− ũh,ML

‖ < ε using the hierarchically accelerated stochastic collocation algorithm
is bounded by:

Kacc ≤α1(N) ε
− ln 2

σ

{
α2(N) + α3 ln ε−1

}N−1

×
√
κ̄ {ln ΛL + α5(N)}

where κ̄ = maxy∈HL
κ̄(y).

To perform this method, we incur an addition cost of interpolation (and
preconditioning).
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Numerical Results : Local Basis

Example 1: Local Basis for Sparse Grid SC

Consider the 2D Poisson equation with random diffusivity and forcing term, i.e.,{
−∇ · (a(x , y)∇u(x , y)) = f (x , y) [0, 1]2 × Γ

u(x, y) = 0 on ∂D × Γ

where a and f are the nonlinear functions of the random vector y given by

a(x , y) = 0.1 + exp
[
y1 cos(πx1) + y2 sin(πx2)

]
,

and
f (x , y) = 10 + exp

[
y3 cos(πx1) + y4 sin(πx2)

]
,

• yn, n = 1, 2, 3, 4, are i. i. d. random variables following the uniform
distribution U([−1, 1])

• The quantity of interest is the mean value of the solution over D × Γ, i.e.

QoI = E
[∫

D

u(x , y)dx

]
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Numerical Results : Local Basis

Computational savings: Local Basis

Gunzburger, Webster, Zhang. Stochastic finite element methods for PDEs with

random input data, 2014 Acta Numerica

Table: The computational savings of the local SG with hierarchical acceleration

Basis type Error # SG points
hSGSC hSGSC+acceleration

cost cost saving

Linear
1.0e-2 377 13,841 7,497 45.8%
1.0e-3 1,893 81,068 38,670 52.2%
1.0e-4 7,777 376,287 167,832 55.3%

Quadratic
1.0e-3 701 29,874 11,877 60.2%
1.0e-4 2,285 110,744 36,760 66.8%
1.0e-5 6,149 329,294 100,420 69.5%

Cubic
1.0e-4 1,233 59,344 23,228 60.8%
1.0e-5 3,233 172,845 57,777 66.5%
1.0e-6 7,079 415,760 129,433 68.8%
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Numerical Results : Global Basis

Example 2: Global Basis w/ Error Balancing

We consider a 1D Poisson equation with random diffusivity term:

∇ · (a(x , y)∇u(x , y)) = 10 in [0, 1]× Γ

u(x , y) = 0 on ∂D × Γ

with

a(x , y) = 1 + exp
{

exp−1/8(y1 cosπx + y2 sinπx + y3 cos 2πx + y4 sin 2πx)
}

Error #SG Pts CG iters CG + acc % Savings
1× 10−2 137 29,355 22,219 24.3
5× 10−3 401 180,087 90,300 49.9
1× 10−3 1105 2,072,625 696,935 66.4
5× 10−4 2929 11,253,264 2,217,615 80.3
1× 10−4 7537 118,429,119 16,204,912 86.3

Table: Iterations and savings between the hierarchically acclerated SG method and the zero
vector method
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Numerical Results : Global Basis

Computed Cost

A Metric for Computational Cost

Zero Vectors: Costzero = CDNhKzero

Acceleration: Costacc = CDNhKacc + Costint
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Figure: Cost (left axis) and percent savings (right axis) in flops of the hierarchically accelerated
SG method versus the zero vector method.
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Numerical Results : Global Basis

Example 3: Global Basis w/ Interpolated Preconditioners

Let x = (x1, x2) and consider the following linear elliptic SPDE:{
−∇ · (a(x1, y(ω))∇u(x, y) = cos(x1) sin(x2) [0, 1]2 × Γ

u(x, y) = 0 on ∂D × Γ

The diffusion coefficient is a 1d random field (varies only in x1) and is
a(x1, y) = 0.5 + exp{γ(x1, y)}, where γ is a truncated random field with
correlation length R and covariance

Cov [γ](x1, x̃1) = exp

(
− (x1 − x̃1)2

R2

)
, ∀(x1, x̃1) ∈ [0, 1]

γ(x1, y) = 1 + y1(ω)

(√
πR

2

)1/2

+
N∑

n=2

βn ϕn(x1) yn(ω)

βn :=
(√
πR
)1/2

e
−(b n2 cπR)2

8 , ϕn(x1) :=

{
sin
(
b n2cπx1

)
, if n even,

cos
(
b n2cπx1

)
, if n odd

• E[yn] = 0 and E[ynym] = δnm for n,m ∈ N+ and iid in U(−
√

3,
√

3)
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Numerical Results : Global Basis

2D example: Iterations vs Level
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Figure: Percentage reduction in CG iterations per level (left) and vs error (right) with
N = 3, 5, 7, 9, 11 and 13 and for correlation length Rc = 1/2
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Numerical Results : Global Basis

Preconditioning
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Figure: Average CG iterations per level for N = 7 for L = 1/64, with zero initial vectors (left)
and with accelerated initial vectors(right), for preconditioning options: diagonal preconditioner,
1-3 level interepolated incomplete Cholesky preconditioner, and fully locally adapted incomplete
Cholesky preconditioner
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Numerical Results : Nonlinear Problem

Example 4: −∇(a · ∇u) + F (u) = f
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Figure: Total (top) and average (bottom) number of Newton iterations with F (u) = u ∗ u′ (left)
and F (u) = u5 (right)
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Numerical Results : Conclusion

Remarks

• Acceleration works together with preconditioning to speed up solvers.

• Especially effective for more complicated or non-linear PDEs

• Improves efficiency of iterative solvers even with the additional cost of
interpolation

Galindo, Jantsch, Webster, Zhang
A Hierarchically Acclerated Stochastic Collocation Method for Random PDEs, 2014
(In preparation)

Gunzburger, Jantsch, Teckentrup, Webster

Multilevel Stochastic Collocation Methods for Random PDEs, 2014 (Submitted)

SIAM JUQ
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